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The application of the general theory of Schottky noise to a beam subjected to laser cooling in a
storage ring is considered. It is shown that the noise properties differ strongly from the case of an
electron-cooled beam. The important role of the tails of the velocity distribution is discussed. Good
agreement between the theoretical predictions and experimental results obtained at the ASTRID storage
ring has been found. The possibility of extracting dynamical information from the Schottky spectra is

also discussed.
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I. INTRODUCTION

Several methods of nondestructive beam diagnostics
based on the analysis of signals induced by the beam on
pickup electrodes have been widely used in accelerators.
In particular, the study of beam thermal noise (Schottky
noise) is one of the most commonly used methods for
measuring properties of a continuous beam. During the
last 15 years this technique has been routinely used at
practically every installation operating with continuous
beams, including the antiproton accumulators at CERN
and Fermilab, and a number of installations with com-
paratively low energy beams used for experiments in
atomic and nuclear physics [1].

In this article we will analyze the case of longitudinal
particle motion, where the fluctuations of the total num-
ber of particles inside a pickup electrode are measured.
The signal from a single particle has the form of a short
pulse that is repeated at the rotation frequency; thus, the
spectral density of the beam noise consists of narrow
peaks located at the harmonics of the revolution frequen-
cy.
If the beam density is small or if the beam has a
sufficiently large momentum spread, so that the collective
beam interaction is small enough, one can consider the
motion of separate particles to be independent. Then the
noise spectral density around each harmonic, S, (8w, ), is
directly related to the particle distribution function in re-
volution frequency [1,3],

S"(Swn)Z%fm(Swn/n), Sw,=w—nao, , (1)

and one can easily measure the momentum distribution
function and calculate the rms momentum spread in the
beam. Here f,(8w) is the particle distribution function
in revolution frequency normalized so that
f fobw)ddw=1, N is the number of particles in the
beam, and n is the harmonic number. One can see from
Eq. (1) that the integral of the spectral density around
each peak is equal to the number of particles and does
not depend on other parameters.

In a dense and cold beam the motion of each particle is
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strongly influenced by the motion of other particles; thus
the noise spectral density should be determined by the
particle interactions. The general theory of such fluctua-
tions was developed in plasma physics [2] and successful-
ly applied to accelerators in Ref. [3], which we will follow
here. For the most frequently encountered case, when
the beam energy is below the transition energy and the
main contribution to the ring impedance is from
Coulomb repulsion, the noise spectral density should be
strongly suppressed by particle interactions. In this case
the spectrum around each harmonic usually consists of
two peaks located symmetrically around this harmonic.
These peaks are associated with charge density waves
propagating upstream and downstream along the beam.
It was shown [3] that in the equilibrium state, when the
velocity distribution function is Gaussian, the integral of
the spectral density around each harmonic is equal to
2
(a>)=[  S(0do=N=—22— @)
around S 602 + QZ
harmonic

Here 8w? is the rms spread of the particle revolution fre-
quencies, ) is the so-called coherent shift, and we use the
same normalization of the longitudinal beam density as in
Ref. [3],

1
2

1 in(wyt —8)
S A,

n=— o

plO,1)= . [pt6,00d6=N .

(3)

For purely capacitive impedance (Coulomb particle
repulsion) () is equal to the relative frequency at which
these coherent waves in the beam propagate around the
ring. One can see that for a cold beam, when 8w’ < Q?,
the fluctuations are strongly suppressed by the particle
interaction.

This noise suppression was studied theoretically and
experimentally for the first time in Novosibirsk for an
electron-cooled beam [3,4]. Good agreement between
theory and experiment was found. But recently, experi-
ments with laser cooling have exhibited a very strong
discrepancy between the developed theory and experi-
mental results [5]. In particular, it was found that after
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switching on the cooling, the noise spectral density, in-
stead of decreasing, increased by two orders of magni-
tude. This article is devoted to an analysis of this
phenomenon.

II. REVIEW OF THE THEORY

We will follow Ref. [3], modified only as necessary to
correct obsolete definitions and minor inconsistencies.
There it was shown that the noise spectral density around
the nth harmonic of the revolution frequency is equal to

N folbw,/n)

S, 0w,)=—"———"—, d0,=0—no,, (4)
n n n |En ( 8(0" )2\ n 0

where €, (w) is the analog of the plasma dielectric permit-

tivity. For the case of a beam without collisions, it can be

expressed through the integral of the distribution func-

tion

e, (0)=1+ 9 e 1 8f ofe)
" n

do' . (5
—w0—nw'—i0 Jdo’ @ 5
The contour used for the integral includes the real axis
and is deformed around the pole at @’ =w/n above the
real axis. Here the coherent shift for the n-th harmonic is
determined by

2_.N22320’0 do do _ 9o l—a'_;:2
Qn—z-——F————-—n ny ;- 2 ’ (6)
47’R  dp dp  po y

where N is the number of particles in the beam and eZ is
their charge, R is the average ring radius,
a=p/o(dw/dp) is the momentum compaction factor,
and Z, is the longitudinal ring impedance for harmonic
n. The coherent shift Q, is the characteristic frequency
describing the time evolution of a density perturbation
having the wavelength 27R /n. In general, the im-
pedance Z, has both real (resistive) and imaginary (capa-
citive and inductive) parts.

One can see that in the case of a hot and weak beam
the beam permittivity is close to 1, e~ 1, and Eq. (4) coin-
cides with Eq. (1). It should be noted that Eq. (4) can be
used only if a beam is stable, i.e., all roots of the disper-
sion equation

£,(0)=0 (7)

have positive imaginary parts.

Usually, for low energy beams, Coulomb repulsion pro-
duces the main contribution to the storage ring im-
pedance. In this case the impedance is purely capacitive
and is given by [6]

Zn 4

n cByZi

where B and y are the relativistic factors, c is the velocity
of light, and r, and r, are the radii of the vacuum
chamber and the beam, respectively. Thus, for beams
below transition energy ay?<1, the square of the
coherent shift becomes real and positive,

) (8

7 1
In-<+ =
nrb 2
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[Note that the value for the square of the coherent shift
presented in Ref. [3] is two times smaller than that deter-
mined by Eq. (9). This mistake is corrected in [8], the
English edition of which will be published soon.]

For a Gaussian distribution function

2

280°

(10)

f o) = ——exp
\/211';5(02

the integral (5) can be reduced to the following expression
[7):

2
n
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nV 280°
The results of the numerical calculations for a fixed num-
ber of particles and different revolution frequency spreads
(longitudinal temperatures) are shown in Fig. 1. One can
see that with decreasing beam temperature, two peaks,
corresponding to two waves, appear. The position of the
peaks has a rather weak dependence on the beam temper-
ature. With decreasing temperature, the peaks become
sharper and approach the positions determined by the
value of the coherent shift.

As has been previously reported [5], ASTRID was used
to first study uncooled beam using Schottky and laser di-
agnostics. The Schottky spectra, which were strongly

y (11)
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FIG. 1. Dependence of the spectral density on frequency for
different particle _momentum spreads. The numbers on the plot
are values of 'V 802/Q,,.
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TABLE 1. Velocity spread of an uncooled beam for various
times after injection, inferred from Schottky spectra and mea-
sured by LIF.

Time Sound velocity V/3v? for Schottky V'8v? for LIF

(s) v, =QR measurements measurements
(m/s) (m/s) (m/s)

0.5 744+7 518+36 481+5

0.8 685+11 546137 512+22

1.0 649+12 588+39 536+27

distorted by particle interactions, were analyzed using
Eq. (11) above. The extracted velocity spreads were then
compared to direct measurements of the velocity distri-
bution, which were carried out using a laser-induced
fluorescence (LIF) technique [5]. Some results are shown
in Table I. Although LIF measurements systematically
give lower values than the Schottky analysis, the two
agree to within the experimental error (see also the next
section for details of the experiment). These measure-
ments confirm the validity of the model described above
for Gaussian velocity distribution.

III. ANOMALOUS BEHAVIOR OF SCHOTTKY
NOISE IN A LASER-COOLED BEAM

The analysis given below is based on the experimental
results obtained in the laser-cooling experiments [5] car-
ried out at the ASTRID storage ring. The relevant pa-
rameters for the cooling experiments are presented in
Table II. All measurements of the Schottky noise were
done at the 23rd revolution frequency harmonic of about
514 kHz.

To understand the difference between the behavior of
Schottky noise in laser and electron cooling, we need to
consider the process of laser cooling in more detail. The
cooling force is created by two counterpropagating laser
beams [5]. Because the natural width of the absorption
line can be very small compared to the laser detuning, the
cooling force often consists of two separate peaks associ-
ated with two lasers. The distance between the peaks is
determined by the detuning of the laser frequencies. An
example of such a cooling force is shown in Fig. 2.

To cool the beam, the laser detuning is initially set so
that the force peaks are located outside of the particle
distribution function. Then as the lasers are scanned in
frequency the particles are pushed by the cooling force to
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FIG. 2. Calculated drag force for laser detuning of 1000
MHz.

the center of the distribution function. During scanning,
such a cooling process produces a particle distribution
function that has very sharp edges and is distinct from a
Gaussian in that it has virtually no tails. Examples of ex-
perimental measurements of particle distribution func-
tions and Schottky spectra at different stages of cooling
are shown in Fig. 3.

As one can see from Fig. 3, the behavior of Schottky
noise in a laser-cooled beam is significantly different from
that described in the above theory. Although, as expect-
ed, two peaks appear in the spectra during beam cooling,
there are three important distinctions. First, just after
switching on the beam cooling, the integral of the spec-
tral density around the 23rd revolution harmonic,
( A2)|, 53, increases rapidly with decreasing momentum
spread and reaches a value higher by two orders of mag-
nitude than that observed without cooling (Fig. 4). As
scanning proceeds, its value decreases and has roughly
the same value as without cooling at the very end of the
process, when the beam momentum spread is more than
ten times smaller. Second, the splitting between peaks
depends strongly on the momentum spread (Fig. 5), while
from the theory for a Gaussian beam this dependence is
expected to be rather weak. Finally, the heights of the
two peaks are widely different. Figures 3—5 demonstrate
these described distinctions.

The absence of tails in the distribution function is the
clue to the understanding of the strange behavior of the

TABLE II. ASTRID storage ring parameters.

Ion kinetic energy

Ions

Beam current

Number of particles
Circumference

Revolution frequency

Betatron tunes v,,v,
Momentum compaction factor a

Laser wave lengths, copropagating, counterpropagating

Laser power

100 keV

24Mg+

2-4 uA
(5.6-11.2)x 108
40 m

22.3 kHz
2.21,2.64

0.07
~278.8,280.4 nm
20-40 mW
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FIG. 3. (a) Schottky spectra measured at various detunings
(shown between figures) during laser cooling. Dashed lines indi-
cate the noise floor of the measurement; each vertical tick mark
is one decade in relative power (10 dB). (b) The corresponding
velocity distribution, measured by laser-induced fluorescence.
Each spectrum contains about 10° fluorescence counts.
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FIG. 4. Dependence of the integral of spectral density
around the 23rd harmonic on the laser detuning. Dotted line
shows value without laser cooling.
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FIG. 5. Dependence of splitting between the peaks in the
noise spectra on the detuning of the lasers. The dotted line
shows the value of the laser detuning expressed in terms of the
shift of the revolution harmonic that was used for measure-
ments. Dashed and solid lines show the theory predictions for
the rectangular distribution function and for the distribution

function described in Eq. (12), respectively.

Schottky signal described above. As will be seen, the
reason for the great amplification of the noise is the
disappearance of Landau damping.

IV. BEAM PERMITTIVITY WITHOUT FRICTION

In order to simplify calculations we will first neglect
the cooling force. This is justified by the fact that most of
the particles experience virtually no force at the first
stage of the cooling, when the detuning is large. The par-
ticles are just pushed by the cooling force towards the
center of the distribution function, where they stay
without friction. Their velocities will not change in the
absence of diffusion. To estimate the effect of the drag
force, we can compare the damping decrement at the
center of the distribution function (zero relative velocity),
A=(1/M)JF /dv |U —o» and the coherent shift. The results
of such a comparison for the parameters of the experi-
ment are shown in Fig. 6. One can see that when the de-
tuning of the lasers is more than ~500 MHz, the decre-
ment is at least two orders of magnitude smaller than the
coherent shift, and the cooling force can be neglected in
the first approximation.

Thus we consider a model where we neglect the fric-
tion force and use a simple expression for the distribution
function, which should approximate the results of the
measurements better than the Gaussian distribution. To
calculate the beam permittivity we will use the following
normalized distribution function:

4
+

8
45

64C()b

(9]

@y

[2]

1—2 , ol <o, ,

fol@)=

0, |(l)‘2(l)b .

(12)
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FIG. 6. Dependence of the damping decrement at zero rela-
tive velocity on the detuning of lasers for the parameters of the
ASTRID storage ring. The revolution frequency and the
coherent shift for the 23rd harmonic are shown by dashed lines.

Here 2w, is equal to the full width of the distribution
function. This function has much steeper edges than a
Gaussian function and represents a much better approxi-
mation to the results of the measurements. Figure 7
shows the fits of this function and the Gaussian distribu-
tion to the experimentally measured distribution for a
laser detuning of 1025 MHz. As one can see, for this par-
ticular measurement there is very good agreement with
the suggested functional shape, although for most cases
the measured distribution functions have even steeper
edges and the agreement is not quite as good. The verti-
cal lines in the figure show the positions where the parti-
cles are in resonance with the lasers.

3000 I I
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FIG. 7. Measured velocity distribution function for laser de-
tuning of 1025 MHz. Also shown are fits to this function:
Gaussian distribution (dashed line) and the distribution de-
scribed in Eq. (12) (dotted line). Vertical dotted lines show the
velocities where ions are in resonance with laser radiation. Rel-
ative velocity and revolution spreads are related by
Sw, /(nwy)=(1—a)Av /v,.
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Substituting Eq. (12) into Eq. (5) and performing the
calculation, we finally find that the permittivity is given
by

4593, 8 8

2
=14+ = 4+ = 2__ 4 4_2 6
el = e |21 757 T3 Y
3 4_11 y_I — (0]
yy )ny+1 > no,

(13)

For w, =<2.13Q, /n the equation Re[¢,(w,)]=0 has two
real positive roots (see Fig. 8). The solution for the larger
root can be approximated as

0.8
nw,

Q

n

+0.282

0, =nw, , hw,=2.13Q,

nw,

n

(14)

to an accuracy of about 1%. Taking into account that
for nw, =1.96Q, the imaginary part of the permittivity
is also equal to zero at these points, we find that € be-
comes zero, too, i.e., the dispersion equation €,(®,)=0
has real roots for nw, <1.96L),. These frequencies,
where € becomes zero, determine the positions of peaks in
the spectra. The solid line in Fig. 5 shows the splitting
between peaks calculated from Eq. (14). As one can see,
the peak positions approach the coherent shift only for
the case when nw, <<,. To test how strongly this re-
sult depends on a particular form of the distribution func-
tion we also calculated the beam permittivity for a rec-
tangular distribution function. (The use of this function
is not fully correct for frequencies near the distribution
function edge, where € goes to infinity. We can neglect
this in our consideration because the frequencies in which
we are interested are well outside of this point.) The re-
sults of these calculations are shown by the dashed line in
Fig. 5. As one can see, the behavior of the curve is also
in close agreement with the experimental results. Thus
we can conclude that, in contrast to a Gaussian distribu-

0 0.5 1 1.5 2
o/noy

FIG. 8. Dependence of beam permittivity on frequency for
the distribution described in Eq. (12), Q, /nw, =1.
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tion function, the distribution functions with steep edges
reproduce the dependence of the splitting between peaks,
which has been observed in experiments.

At zero relative frequency we can neglect the influence
of the tails. According to Eq. (13) the beam permittivity
at zero frequency is

2
45 Q
xr:(0)~1+21 nzw%,

(15)

Then the noise spectral density at zero frequency is equal
to

45N 1
64nw Q2
b + iS_ "
21 n2w?

S(0)~ 5 . (16)

A comparison of the measured data and the predictions
of Eq. (16) is shown in Fig. 9. Taking into account that
the height of the peaks changes by more than a factor of
1000 over the range of laser dutunings, one can appreci-
ate that there is good agreement between theory and ex-
periment, at least for large laser detuning (more than 500
MHz), where we can neglect the cooling force.

V. INFLUENCE OF TAILS ON SCHOTTKY SPECTRA

Although we obtain the right prediction for the split-
ting between the zeros of the permittivity, the model does
not yet predict the existence of peaks in the noise spec-
trum, since the distribution function is equal to zero at
the frequencies corresponding to the zeros of ¢,(w). In
reality, there must be small tails in the distribution func-
tion that will supply particles to these regions. Although
there is a small number of particles, the noise spectral
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FIG. 9. Dependence of the noise spectral density at zero rela-
tive frequency on laser detuning.
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power becomes very large because € is very small.

We can consider that the particle distribution function
consists of two parts: the functions for the central part
and for the tails,

fs=f+8f . a”n

Because only a small number of particles are located in
the tails, one can neglect their contribution to € for all
frequencies, except when € becomes zero. Here one can
also neglect the contribution of the tails to the real part
of € because it slightly changes the positions of the peaks
but does not change their heights. Thus we can let

© d(f+6f)/da’

)_‘1+Q§ do'
enl0)= n f—m o—hno' —iA @
Q) a5f
~ i 2L , 18
€on (@) mnz 30 | e (18)

where g,,(w) is the beam permittivity without the tails.
Let ®, be the real root of the dispersion equation
€9, (@,)=0; then we can expand € in a Taylor series in the
vicinity of w,,

deq, 07 35
g,(0)= %0 m=wr(m-—w,)+m 2 e a=u /o (19)
If 381 /6w|w=mr <0, then the system is stable and we

can use Eq. (4). Substituting Eq. (19) into Eq. (4) we get
an equation describing the spectral density near the peak,

S'llneak(am)
_N 5f(w,/n)
n | Beg, 02 3sf ’
—_ + —_—
dw m=mr6w & n2 aCL) a):a)r/n
do=w—nwyto, . (20)

For a cold beam, w, <<}, these peaks produce the main
contribution to the harmonic amplitude. Then, to find
the total integral around nth harmonic we use

€ A,f)zzf_w SPek(w)dw

_ 2Nnéf(w,/n) 1)
o | 2eon 351 '
" ow =0, ow o=0,/n

The factor of 2 appears in Eq. (21) because there are two
peaks in the spectrum. One can see that if the derivative
of the distribution function in the tails goes to zero, the
Landau damping disappears and the spectral density goes
to infinity. For a positive derivative the system becomes
unstable.

VI. DIFFUSION AND THE ORIGINATION
OF THE TAILS

For particles in the tails, which are outside the range
between the cooling force peaks, the cooling force de-
creases rapidly with velocity. This implies that if a parti-
cle diffuses out from the core it will stay in the tail for a
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long time. Thus, even small particle diffusion can pro-
duce large tails in the distribution function.

There are two main mechanisms that produce tails.
They are interbeam scattering and collisions with residual
gas. Although the diffusion due to multiple small angle
scattering is usually the dominant effect, it does not pro-
duce large tails because of the effective barrier of the
strong friction force, which confines particles to a small
velocity range. However, in the event of an energetic sin-
gle scattering a particle can jump past this barrier to the
tail, where the friction force is very small.

For the conditions of the laser-cooling experiment de-
scribed here, the single collision intrabeam scattering
(Touschek effect) is the dominant mechanism for populat-
ing the tails. For an estimate we can consider the storage
ring in the smooth approximation, with equal horizontal
and vertical sizes and velocity spreads. Then, if the lon-
gitudinal temperature is much smaller than the trans-
verse one, the following expression can be used to calcu-
late the number of particles scattered with longitudinal
velocity more than v (Touschek lifetime) [10]:

14N _ e'N
N dt  4VaM*%%,Ro?
\/7_7' 2 A 2
X | —==(1+4242) |1— = —x
) ( ) |1 ‘/;foe dx
—Ae 4 22)

Here N is the number of particles in the beam, e and M
are the charge and mass of the ion, U, is the rms trans-
verse velocity, o is the rms beam radius, R is the mean
radius of the storage ring, and A=v /7,. Differentiating
Eq. (22) with respect to v, one can calculate the flux of
particles into the tails of the distribution function,
d?N /dtdv. Due to the cooling force these particles will
be decelerated towards the center of the distribution.
Figure 10 shows the results of a numerical calculation of

3 T

f(v) [arb. units]

MMX&A{MMM\‘
0.5 1
10% vive
FIG. 10. Simulation result of the particle density distribution
in the tails for parameters of the laser-cooling experiment with
*Mg*; I,=2 pA, 0 =3 mm, U, /vo=10">. Crosses, density dis-
tribution in tails; solid line, initial density distribution.
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the distribution function for the tails, considering only
the cooling force and Touschek scattering. One can see
that because of the drag force the derivative of the distri-
bution function is positive for velocities in the range
=~(1-1.5)v,, where v, is the velocity when a particle is in
resonance with the laser radiation. If the velocity corre-
sponding to the coherent shift, RQ, /n, is in this range,
the beam becomes unstable and longitudinal coherent
motion will be excited in the beam. Note that in this cal-
culation we neglected multiple intrabeam scattering,
which will smoothen the distribution presented in Fig. 10
and will possibly exclude the positive derivative and the
beam instability.

VII. INFLUENCE OF THE FRICTION FORCE
ON THE SCHOTTKY SPECTRUM

The cooling force changes the beam permittivity. Al-
though for the general case of a nonlinear friction force
and a non-Gaussian distribution function it is impossible
to perform an analytical calculation of the permittivity,
some simple formulas can give reasonable accuracy in
many practical cases.

It was found in Ref. [3] that in the limit of a cold beam
and strong cooling the permittivity is

2

(0)=1 % (23)
Bl o (w—iA)
where A is the single particle cooling decrement. On the
other hand, if the beam is sufficiently cold, n%8e0?<<Q2,
then Eq. (5) implies that for frequencies w?>>n28w?, the
permittivity is equal to

2 92
" i 8L
® n? dw

. (24)

w/n

gpl0)=1—

The last term corresponds to the contribution from Lan-
dau damping. If the Landau decrement is small in com-
parison to the coherent shift, these two equations can be
combined,
2 2
Q, Q of

En(w)zl—m'f'#l

b
w/n

n? dw
02 >>n%0?, 0?>>n%0’, (25
n

which is justified for all practical cases of a cold beam.
For a nonlinear friction force, F(v), we can express A as
an average over the particle distribution function,
1 = OF
A=—— - dv . 26
MY B f(v)dv (26)
In the vicinity of the peak in spectral density, 0 =(},,
we can expand Eq. (25) into

1 o, +i A, 27
gyl0)= pe th )
where the total decrement is
Q;
A =7\.—1r———a—f— . (28)

s n? dw |Q,/n
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Taking into account that the coherent shift is proportion-
al to n, one can see that the contribution of Landau
damping also grows proportionally to » while the contri-
bution of laser damping does not depend on n. Using
Egs. (4) and (27) one can obtain the spectral density
around the peak

Nf(Q,/n) Q2
n 4802 +A2’

Speak(§e)= So=w—noyto, .

(29)

Thus in the case of a cold beam, the spectral density of
fluctuations is determined by three parameters. They are
the coherent shift Q,, the coherent decrement A, and the
value of the distribution function at the resonant frequen-
cy f(Q, /n). It is important to note that measurements
at different harmonics would allow an identification of
the separate contributions from Landau damping and
external (laser or electron) damping.

The dependencies on laser detuning calculated from
measurements are shown in Figs. 11 and 12 for the distri-
bution function values at the resonant point df /dwl|g, /,
and for the damping decrement. Taking into account
that in Touschek scattering a particle cannot get a longi-
tudinal velocity kick much larger than the rms transverse
velocity, and assuming that the particles in the tails are
evenly distributed in a velocity range determined by the
transverse velocity spread —7, <v <7,, we can estimate
the total number of particles in the tails. The results of
such an estimate are shown in Fig. 12. The scale on the
right-hand side of the plot shows an estimate of the per-
centage of particles in the tails, calculated with the fol-
lowing formula:

AN/N=2f(Q,/n)o, /R . (30

One can see that there is a good qualitative agreement
with the simulation results presented in Sec. VI. Unfor-
tunately, the accuracy of the measured beam parameters
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FIG. 11. Damping decrement as a function of laser detuning.
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FIG. 12. Value of the distribution function at the frequency
of the Schottky peak as a function of laser detuning.

is not currently sufficient to do a more accurate compar-
ison.

VIII. DISCUSSION

The ASTRID data that are analyzed in this paper
represent simultaneous measurements of both the
Schottky spectra and the velocity distributions in a very
cold beam [6]. In general, good agreement was obtained
between experimental measurements and the proposed
theoretical model. It should be noted that at intermedi-
ate laser detuning, when the peaks in the spectrum be-
come very narrow and large, their width is mostly deter-
mined by the resolution of the fast Fourier transform
(FFT). This probably explains the difference between the
measured Schottky spectra and the theoretical analysis
(see Fig. 13), which predicts a bell-shaped curve in the
spectrum center and more narrow peaks. Although the
friction force, which also produces broadening, was
neglected in the theoretical curve of Fig. 13, its effect is
not very large, because as can be seen from the figure, the
peak width is determined by the FFT resolution. Numer-
ical experiments carried out on the FFT of an ideal
sinusoid exhibit behavior almost identical to the mea-
sured spectral density in the peak.

The experimental results from ASTRID illustrate that
the model for Schottky noise based upon a Gaussian ve-
locity distribution is not applicable to a laser-cooled beam
during cooling. The model presented here emphasizes
the importance of the detailed shape of the velocity dis-
tribution in determining the fluctuation spectrum. In
particular, the tails of the velocity distribution play an
important role. In general, particle beams in storage
rings often have an asymmetric velocity distribution due
to energy loss in the rest gas, and they may also have
long, non-Gaussian tails. The analysis presented here
may thus have a wider application, for example to
electron-cooled beams.

In previous works, the difference in peak heights in the
Schottky spectra of electron-cooled beams was attributed
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FIG. 13. Comparison of the experimentally measured
Schottky spectrum for laser detuning of 1025 MHz and the
theory prediction. The distribution function is linearly com-
bined from two parts: the core and the tails. The core is de-
scribed by Eq. (12) and its plot is shown in Fig. 7. The tails in-
clude 15% of the particles and are described by Gaussian distri-
bution with a temperature equal to the transverse beam temper-
ature, so that \/sz/v0=2.7><10_3. The friction force was
neglected in the theory. Insets show the peaks on a smaller
scale.

to the real part of the storage ring impedance [9], which
causes an increase of the lower peak and a decrease of the
upper peak. Such a difference has been observed in many
experiments, but it should be noted that in the case of the
laser-cooled beam in ASTRID, the intensity of both
peaks was strongly increased (compared to a Gaussian
beam), which implies that the effect of the tails deter-

4353

mines the main contribution to Schottky noise. The
effect of the tails may also be responsible for the different
heights of the peaks in the case of electron cooling, be-
cause the inelastic scattering on residual gas atoms pro-
duces an asymmetry in the tails of the velocity distribu-
tion; it creates a tail at low velocity but cannot influence
the tail at high velocity. Like the real part of the ring im-
pedance, it causes an increase of the lower peak height.
The effects of these two possible mechanisms could easily
be distinguished by measurements at different gas pres-
sures, which should have a strong effect on the tails but
cannot, of course, change the ring impedance. For a
beam cooled by counterpropagating laser beams, an
asymmetry may also arise due to differences in laser
powers or spatial overlap of the laser and ion beams.

Although the Schottky spectra of laser-cooled beams
appear to be very complicated, this paper demonstrates
that quantitative information about beam parameters can
be extracted from them. In the future, it is very impor-
tant to do measurements on different harmonics of the re-
volution frequency, because both the ring impedance
from the vacuum chamber walls and the effect of the drag
force depend strongly on harmonic number. It is hoped
that the theoretical model presented here will prove valu-
able in diagnosing the behavior of very cold beams that
are not in equilibrium.
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